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Abstract

Researchers commonly apply inferential statistical procedures to population data from
the fifty U.S. States as if estimating population parameters from sample statistics. This is
incorrect because with population data there is no need to make inferences about quantities
that are already known. Instead authors should simply provide evidence that their specified
model provides a good fit to the data. Summary measures of variance as well as the full
engine of Bayesian statistics perform this function. This research note demonstrates why
the current practice of making inferences from population data with the null hypothesis
significance test is wrong, provides some specific examples of problems in the literature, and

gives prescriptive advice about correctly assessing and conveying empirical model results.



Introduction

A frequent and unanswered query in empirical research on state politics and policy con-
cerns the interpretation of statistical models using population level data. This research note
addresses the question: when we use population level data and construct a model, what is

the appropriate interpretation of the results?

A common empirical methodology in the study of the U.S. states is to obtain population
data aggregated to the state-level from government sources and then construct a parametric
model (Dye 1984, Gray 1976, Hero and Tolbert 1996, Rinquist 1993). Researchers typically
apply null hypothesis significance tests to such a model to assess the reliability of their
findings. However, this use of significance testing is incorrect. Possession of population
data precludes the need for inferring population values, which is the only motivation for

performing a significance test.

Researchers should instead be concerned with how well their model “fits” the population
data, meaning how much of the variance is explained relative to how much is left unexplained.
With population data, the fit of the model to the data is correctly judged by the uncertainty
for each coefficient relative to its magnitude. However, this vague standard lacks the invalid,

but appealing, arbitrary threshold approach of a significance test.

The best means of measuring model fit for empirical analysis in state-level research with
population data is to employ general measures of model fit as well as Bayesian statistical
methods which are free from the flawed hypothesis testing methodology that dominates
political science. The Bayesian paradigm considers parameters not as fixed points as but
realizations from some estimable distribution. These distributions are recharacterized when
new data are observed, thus making Bayesian analysis particularly well suited to describing
the underlying iterative state-level population data generation process. Conversely, null
hypothesis significance testing is a deeply flawed and widely misunderstood procedure that
impairs the accumulation of knowledge (Cohen 1994, Gill 1999, Hunter 1997, Rozeboom
1960, Serlin and Lapsley 1993, Schmidt 1996).

1 The Main Point
In the classical and typical scenario where sample data are used to make inferences about

population parameters, all models that can be constructed through differing specifications
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are technically incorrect. However, some of these models are quite useful in understanding
political phenomena of interest. Conversely, when population data are used, all models are
by definition correct. Yet some models are obviously useless. This contrast exists because
with population data there is no requirement to infer values that are already known, and
differing population models are just alternative views of the truth. What we really care
about is whether or not the researcher generated parametric specification is a good fit to the

population data, as measured by unexplained variance.

Suppose we construct a simple bivariate regression model in which state-level median
income is used to predict state high school graduation rate using data from 50 states for
a given year. These data are produced by government agencies and are considered highly
reliable descriptions of the state populations. For simplicity assume that a linear model is
appropriate. This model produces a slope 3, with an associated standard deviation . What
does this mean? The parameter [ is the population change in high school graduation rate
for a one unit difference in median income, holding all other modeled factors constant: a fact
not a supposition or inference. For any value of [, including zero, this is a meaningful and
true description of reality. Now suppose we have an alternative model in which state-level
median shoe size is used to predict state high school graduation rate. The slope parameter
from this model is also a true description of the population, but is unlikely to be far from
zero and is certainly not useful. Even if an effect is known to be true in the population, this
is not a sufficient condition for the effect to have substantive utility as a description of social

behavior.

A population cross-sectional model is actually a single-period observation from a stochas-
tic process. It is still called a model because the researcher makes specification decisions with
regard to explanatory variables and cases, and therefore introduces the possibility of both
omitted variable bias and selection bias. In addition, population models can specify an ill-
fitting parametric form, fail to consider heteroscedasticity and autocorrelation, introduced
endogeneity, and ignore systematic measurement error. Unaccounted for, these unwelcome
effects will fall to the error term in the specified model. Therefore population cross-sectional

results are single period observations from a stochastic series of events in which the specifi-



cation determines the distribution of the error term (Rivers and Rose 1985, 185). In other
words, even with population data, the researcher determines how the theoretical model is fit

to the data, necessarily leaving unexplained variance of some source and magnitude.

Because these data are a cross-section from some ongoing stochastic process at the pop-
ulation level, statistical descriptions of a single period have no generalizability across an
enclosing era. While most readers are willing to accept a description of 1973 data as resem-
bling 1972 or 1974, there is no guarantee from a cross-sectional study that dramatic events
(presidential resignations, OPEC oil embargoes, price freezes, etc.) will not occur. Thus
while there may be a low probability of macro-level shocks in population data across fifty
states and nearly 300 million citizens, a cross-sectional statistical model does not present

any actual evidence of the continuance and stability of observed phenomena and trends.

Some Problems with Existing Approaches

Much empirical research on state politics and policy uses highly reliable, often government-
furnished, data that describe aggregate state-level economic, social, or political population
characteristics at a given point in time. Despite the commonality of the data source, scholars
have employed a number different methodological approaches to questions of inference and
model fit. These vary greatly in quality from essentially correct summary descriptions of
population parameters to fatuous applications of inferential statistics. One notable exam-
ple of the latter is the idea that standard statistical inference procedure from samples to
populations can be applied to population data with the goal of estimating values from “an
imaginary infinite universe of states” (Dye 1965, 593; Blaylock 1960, 302). The unearthly
notion that there exists some platonic set of “potential states”, from which the observed
population states are drawn by some sampling scheme, runs counter to any established no-
tion of inference. If there is an infinite number of potential states of the states from which
one occurs by chance, then what is it that is desired by an estimation procedure? What
value (or distribution of values for Bayesians) supplants others from this infinite set of pop-
ulation alternatives? Clearly the only candidate value is the observed population value,
which we already have thus alleviating the need for inferring some celestial super-population

parameter.



Studies Omitting Standard Errors

A seemingly obvious but pervasive mistake in reporting population cross-sectional results
is the complete omission of measures of variability. The most common example is reporting
correlation coefficients without the associated standard deviation (Besley and Case 1995,
Bonjean and Lineberry 1970, Dawson and Robinson 1963, Dye 1961, Edwards 1990, Fiorina
1991, Gary 1973, Gray 1974, Heer 1966, Hopkins and Weber 1976). Even though this is
a population correlation coefficient, the size of the studied population makes an enormous
difference in judging the reliability of the observed relationship. This is because there still
exist random events that deviate from the true causal phenomenon of interest and these can
easily skew small-n studies: correlation coefficients are built on means making them non-
resistant to outliers. In addition, without reported variances the reader has no way to assess
the quality of the fit with regard to the effects of possible heteroscedasticity, autocorrelation,

specification biases, measurement error, and endogeneity.

A similar mistake is the use of large proportional differences as inferential evidence of
an effect (Hofferbert 1966; Jones and Miller 1984; Wiggins et al. 1992). For example, Nice
(1994, 40) divides the states by the presence or absence of a public school teacher competence
test and then crosstabulates by an innovation score. He suggests that large proportional
differences between the two groups of states are evidence of an effect. The problem with
this approach is that there is no distributional information provided and therefore no non-
arbitrary thresholds.

Purely Cross-sectional Studies

Even when measures of uncertainty are reported in state studies with population data,
misinterpretations exist. One mistaken view is that cross-sectional state-level data analysis is
generalizable across neighboring time because it is population data (Carmines 1974, LeLoup
1978, Jennings 1979, Winters 1976). This implies that descriptive statistics have meaning
outside the original period of study. The central problem here is that a linear regression
coefficient that is assessed as being sufficiently far from zero, given its standard deviation,
has some noticeable and reliable effect size for that period only (typically years in studies of

the U.S. states). It does not mean that this effect endures as an important determinant of



outcome variable behavior in the way implied by significant coefficient estimates in a time
series model. However, it is neither incorrect nor unnatural to theorize about the persistence
of the observed effects in subsequent time periods. In the absence of major shocks to the
modeled system, state-level policy variables are characterized by relatively slow change.

There is, of course, no assurance of this type of stability provided by a statistical model.

Another flawed argument sometimes made in presenting cross-sectional population results
is the assertion that correlation coefficients and their measures of uncertainty are model-
neutral descriptions of the data in the same way that a mode or a range might be considered
to be purely descriptive (Edwards 1996; Hedlund and Friesema 1972; Markus 1974; Mar-
quette and Hinkley 1981). This perspective is wrong because Pearson’s product moment
correlation coefficient is in fact a linear model of the bivariate relationship between the two
variables. The correlation coefficient, r, is deterministically related to the regression coefhi-
cient estimate, 3, by: 8 = rg—j( where Sy is the outcome variable standard deviation and Sx
is the explanatory variable standard deviation. Therefore, these are actually identical sta-
tistical models. Since authors specifying a linear regression model are typically required to
substantiate the existence of a linear functional form and those providing simple correlation
studies are not, then over time the literature accumulates incorrect correlational studies.

Studies Across Time

Another view of state-level studies is that we are not really interested in just a narrow
cross-section of time, but instead we want to make claims about broader periods (Gray
1976; Sharkansky 1968). There are two methods for doing this: pooling data ignoring
possible changes over time, and specifically modeling a time series. When pooling data it
is important to determine that there have not been important changes to variables during
the time period under investigation. Subject to this precaution, pooled data studies provide
results that are informative over a greater period of interest than just a single point in
time. Time series approaches (there are many) specifically parameterize the effects of time
in order to capture cross-time seriality in variables and error terms. The result is a posterior
distribution of the model coefficients of interest taking into account the order in which the

data occurred.



It is not difficult to find published time series work using state-level population data that
shows how much information can be missed by relying on a purely cross-sectional design.
For instance, Becker et al. (1994) demonstrate how strictly cross-sectional approaches would
miss an important aspect from data on taxation of cigarettes. They evaluate state-level
economic factors for all fifty states and the District of Columbia to test the relative strength
of short run elasticity versus long run elasticity for cigarette demand. Their model provides
evidence for the theory that highly addictive products, like cigarettes, will cause short run
effects to dominate long run effects since the immediate aggregate elasticity for addicts will
be dramatically lower. The policy implication is that raising taxes on addictive products
is likely to increase tax revenue in the short term but not necessarily in later years. This
study is notable here because it very clearly illustrates the importance of time-seriality in
determining the fiscal effect of a policy decision. Becker et al. also perform a cross-sectional
analysis where the effect of a price increase due to new taxation is measured the year before
and the year after taking effect. They find that a 10% increase in cigarette prices decreases
consumption only 3% for one period, whereas the long run reduction in consumption is 7.5%.
For a policy planner attempting to measure the revenue impact to the state of increasing
cigarette taxes, this is an important distinction.

Null Hypothesis Significance Testing with Time Series Specifications

It is not well known that time series models are more sensitive than cross-sectional models
to the problems with null hypothesis significance tests as practiced in the social sciences.
It has been shown (inarguably) that this hypothesis testing paradigm is deeply flawed and
generally misunderstood (Bakan 1960; Cohen 1994; Hunter 1997; Rozeboom 1960; Serlin
and Lapsley 1993). Many of these problems are interpretational, but the procedure also
does not provide scientifically valid conclusions due to internal logical inconsistencies (Gill

1999; Meehl 1978; Schmidt 1996).

This dominant approach to hypothesis testing in political science is a synthesis of the
Fisher test of significance (1925a, 1925b, 1934, 1955) and the Neyman-Pearson hypothesis
test (1928a, 1928b, 1936). In the null hypothesis significance test, two hypotheses are posited:

a null or restricted hypothesis (Hy) and an alternative or research hypothesis (H;) describing



competing and exclusive notions about some substantive question. The research hypothesis
is the probability model describing the author’s theory about the data generation process,
and is operationalized through a parameter: 7.

In the most basic case, a null hypothesis asserts that n = 0, and a complementary
research hypothesis asserts that n # 0. The test statistic (7"), some function of n and the
data, is produced and compared with its known distribution under the assumption that Hy is
true. Typical test statistics are sample means, chi-square statistics, and t-statistics in linear
regression analysis. The test procedure assigns one of two decisions, Dy or D1, to all possible
values in the sample space of T, and this sample space is composed of two complementary
regions, Sy and S7, which correspond to supporting either Hy or H; respectively. The p-
value is equal to the area in the tail (or tails), away from the expected value, of the assumed
distribution under H, that starts at the point designated by the placement of T" on the
horizontal axis and continues to infinity. If a predetermined « level has been specified, then

H, is rejected for p-values less than «, otherwise the p-value itself is reported.

In the Neyman-Pearson test, the probability («) that 7" falls in S; (causing decision D;)
is a predetermined null hypothesis cumulative distribution function level: the probability of
getting an observed test statistic greater than or equal to the associated critical value given
a specified distributional form (e.g. normal, x?, F, t) for the test statistic under the null
hypothesis over many hypothetical iterations of the test. In Fisher’s construct, the evidence
against the null hypothesis is the cumulative distribution function level corresponding to the
value of the test statistic under Hy: p = [ Py, (T = t)d¢t, and an implied support for Dy is
given if the test statistic is sufficiently atiflpical given the distribution under H,. These are
very different ideas. With Fisher hypothesis testing, no explicit complementary hypothesis
to Hy is identified, and the p-value that results from the model is evaluated as the strength
of the evidence for the research hypothesis as a function of the data. Neyman-Pearson
tests identify two complementary hypotheses: 'y and I's in which rejection of one implies
acceptance of the other. This rejection is based on an « level determined even before looking

at the data.

The many problems with the null hypothesis significance test as practiced in the social



sciences! are exacerbated in time series inference because the standard test simultaneously
assumes a null distribution for the parameter and a correct specification for the error term.
Many authors have addressed tests for specification error in time series models of different
types since failure to distinguish between residual autocorrelation and model misspecification
will almost certainly lead to invalid inferences (Akaike 1969; Godfrey 1987; Knottnerus
1985; MacKinnon 1992; Shibata 1980; Thursby 1981). Specifically, p-values are calculated
assuming that the null hypothesis of no effect is true and that the model has taken whatever
autocorrelation structure exists in the errors over time and made it systematic by including it
in the parameterization. To give a concrete example, this section derives the dependency of
the null hypothesis significance test on structural assumptions for a linear regression model
with autoregressive—1 disturbances. The AR(1) specification is easily the most popular time

series specification in political science despite some obvious limitations (King 1989, 185).

For an outcome variable vector, Y; measured at time ¢, the simplest AR(1) model for T

periods is specified as:

Y. =X,8+¢
€t = PE€t—1 + Uy, pl <1
uy ~ i.i.d. N(0,0y) (1)

where X, is a matrix of explanatory variables at time ¢, ¢; and €;_; are residuals from period
t and t — 1 respectively, u; is an additional zero-mean error term for the autoregressive
relationship, and 3, p, 0, are unknown parameters to be estimated by the model. Backward
substitution through time gives ¢; = ZJT;II p’uyj, and since Elg] = ZJT;II P’ Elug_j] = 0,

_ Pog
= .

2 . .
then var[e;,] = Elel] = lf; 5, and the covariance between any two errors is: covle;, ]

Assuming asymptotic normality, this setup leads to a general linear model with the following
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tridiagonal 1" x T weight matrix:

- y ]
—p (1+p?) —p 0
Q= ()
0 —p (1+p?) —p
L -p 1 J

The estimated coefficient vector of interest is simply 8 = (X'Q™'1X)"'1X'Q'y, with asso-

ciated variance: var[8] = 13’2;)2 (X'Q271X)~1. This shows that the estimate of the primary
quantity of interest and its measure of uncertainty is dependent on two other model quan-
tities, p, and o2, which can be readily obtained by marginal maximum likelihood (Box and

Jenkins 1976, 53-66; Davidson and MacKinnon 1993, 331-341; Fomby et al. 1980, 208).

The dependence of quality hypothesis tests for the 8 parameter vector on the accuracy
of the estimate for p (p) is startlingly obvious from the foregoing example. While p is easily
calculated from the model and the data, it is extremely sensitive to the appropriateness of
the AR(1) specification. If the autocorrelation is not produced by effects between adjacent
time periods, or if it is manifested in a specification different from (1), then p is an undersized
estimate of the autocorrelation and the structure of the {2 matrix leads to an over-confident
test of reliability. Furthermore, this problem exists even in the presence of highly reliable,

population-level data for the 50 states.

Recommendations

This section provides two means of avoiding the problems outlined in the previous sec-
tion. First, population models can be described with general goodness of fit descriptions that
avoid the failed and flawed null hypothesis significance test, as well as the idea of using infer-
ential procedures in general on population data. Second, a well developed and theoretically
appropriate paradigm for analyzing population models is provided by Bayesian statistics.
There is overlap between these two recommendations as Bayesian statistical output is also
descriptive of population quantities (therefore a means of describing model fit), rather than

being forced into a rubric appropriate for sample to population generalization.
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Assessing the Fit of Population Cross-Sectional Models

In population models variance exists around the calculated coefficients, but this variance
is not an indication of estimator reliability. Rather, it measures the variability of the observed
effect size (), subject to model misspecification, autocorrelation, heteroscedasticity, and
measurement error, as a description of some substantive phenomenon of interest across the

included cases.

Consider the two alternative bivariate linear models using population data illustrated
in Figure 1. Each model has the same slope coefficient (for convenience), but they have
noticeably different variance around the fit. Since population data are used here, the cal-
culated parameters of both models are accurate descriptions of the phenomenon of interest.
The fact that the first model fits the linear trend closer means that the researcher imposed
specification is a better fit to the data. In other words, the error term is smaller in the first
model because the factors not included in the specification are less important (influential)

in the first model than in the second model.

INSERT FIGURE 1 HERE

The idea that both models in Figure 1 are correct but one is better than the other is at
odds with the perspective of inferential analysis typically held by political scientists. We are
trained to think of statistical models as simplified, sample-based depictions of reality that
are neither correct nor unique (Blaylock 1961; Leamer 1978; Russell 1929). In inferential
statistics, two models that each provide reliable results (small p-values, 95% confidence
intervals bounded away from zero, and so forth) can give different substantive conclusions
(Raftery 1995). We select one over the other during the process of model specification
knowing that we are choosing from among incorrect, but hopefully instructive, alternatives

(Box 1980; Miller 1990).

Conversely, in the case of population models, we have a specification provided by the
researcher where any observed coefficient accurately describes at least some features of the
population. Since all ignored effects default to the error term, along with the truly random
behavior that we want in the error term, some population specifications are better than

others at describing the data. Consider a simple additive linear model for the state-level
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change in welfare cases (Y') using population cross-sectional data:
Y= Xupf + Xoife + € (3)

where X1; denotes the " state’s proportion of urban dwellers, and X,; denotes the i*" state’s
proportional contribution to U.S. Gross Domestic Product (GDP). Now instead of this basic

setup we perform a transformation on the GDP variable as in the following new specification:
_1
Vi = X0 + arctan((X2) 2)B2 + €. (4)

While this specification is unlikely to produce a useful model parameter for (35, it does give
the arc-tangent, inverse, square-root population effect of state-level GDP on the change in
welfare recipients where any linear GDP effect will fall to the error term (this change can
also affect the ; term, depending on the covariance). How will we know that this is not a
useful contribution? The variance of the G parameter across the fifty states will be very high
relative to the parameter size?. Since this is population data, it is not a wrong specification;

it is simply a useless (and atheoretical) picture of the data.

What constitutes a “useful” population model? A useful model is one that provides
support for a specific theory in which alternative model coefficients provide a poorer fit to
the data as judged by the ratio of systematic effects to stochastic effects. As an illustration,
consider again the two linear models in Figure 1. If we modify slightly the slope of the line
in the first panel then the ratio of explained variance to unexplained variance will degrade
rapidly. If we do this to the line in the second panel, then this ratio will not change very
much until the line is dramatically altered. Therefore the first model constitutes a better
fit than the second. This is likely because of non-modeled effects in the second model such
as important but omitted explanatory effects, heteroscedasticity, and autocorrelation. Note
that this determination of a useful population model is more general than just the variance
ratio in a linear model; it includes the ratio of systematic effects captured to stochastic effects

left-over in non-linear and non-parametric models as well.

It is also somewhat surprising that tests of significance for regression coefficients are
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immaterial in population models. This is because the null hypothesis significance test, as
practiced in the social sciences, is a device for making conditional probability statements
about point estimates of population parameters from sample quantities. Possession of pop-
ulation data automatically answers the very question asked by this procedure (typically
whether or not a sample provides evidence that an estimated coefficient is distinct from zero
in the population). Performing a significance test on population data is actually an assess-
ment of the fit of the parametric model rather than of point estimate reliability. However,

it is a convoluted assessment because the associated probabilistic reasoning is inappropriate
(Berger 1985; Cohen 1994).

Since it is illogical and inappropriate to perform significance tests with population data,
we are forced to use the variance around the model parameter to assess model fit in a less
formal manner. Without such a significance test there is no arbitrary acceptance threshold
for the ratio of the parameter to its standard deviance. Therefore, judgments about quality of
fit are simultaneously more vague and less constrained by atheoretical conventions. Authors
and readers must make their own judgments about the degree of variability they are willing
to tolerate. The best manner for communicating this uncertainty is to consider population
parameters as having a distribution as described by the fit of the model. This decidedly
Bayesian approach will be described now.

A Bayesian Ecology Approach

In field biological and ecological research, differing ecosystems can be observed, studied,
and compared, but they cannot be directly manipulated in the same way that a chemist
or physicist does in the laboratory. In some respects this very much like working with
state-level political science data, as there exist population-level variables, observations over
time, substantial diversity in regional settings, great commonality of underlying principles,
non-cooperative subjects, and measurement error. In this setting a question arises as to
what is the scope of the system being evaluated. Ecologists have two primary perspectives
on this question which are both directly analogous to state-level study in political science.
One perspective emphasizes the completeness of the system at a particular moment and

focuses on studying the population of plants and animals in a specific region or area (states
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in our case). The other perspective, of equal importance in ecology, is that whatever can be
observed is simply a cross-section from a time series of biological and physiological change:
plants and animals evolve, atmospheres change, weather is non-constant, and tumultuous
events occur. The recent introduction of Bayesian methods to ecology has synthesized these
two perspectives and provided an overarching framework for analyzing such systems over
time by updating descriptions of unknown parameters as new observations occur (Ludwig
1996; Reckhow 1990; Solow 1993; Taylor et al. 1996; Wolfson et al. 1996), although not
without some criticism (Dennis 1996; Edwards 1996)

The central problem with analyzing ecological systems with standard population statis-
tics is that most of these systems are uniquely occurring events in space and time, whereas
frequentist statistical analysis is built upon expected occurrences over many repeated tri-
als (Reckhow 1990). Restated, the conventional frequentist statistical approach requires an
assumption that the calculated statistics have sampling distributions based on long-run be-
havior keeping explanatory factors constant, but population-level studies of enclosed and
evolving systems (whether U.S. states or ecological areas of study) are non-replicated events
over time. Therefore, the underpinnings of null hypothesis significance testing (p-values, pre-
determined « levels, constancy of assumptions) have no obvious theoretical interpretation

(Berger 1985; Ellison 1996).

With Bayesian analysis, assertions about unknown model parameters are not expressed
as point estimates with reliability assessed using the null hypothesis significance test. In-
stead, population parameters are assumed to be random variables themselves. Bayesian
statistical information about these parameters is summarized in probability statements ap-
plied to either samples or populations. These summaries include quantiles of the posterior
distribution, the probability of occupying some region of the sample space, the posterior
predictive distribution, and Bayesian forms of confidence intervals such as the credible set
and the highest posterior density region (Box and Tiao 1992, Casella and Berger 1990, Lee
1989, Leonard and Hsu 1999).

In the Bayesian setup, the unnormalized posterior (sampling) distribution for the un-
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known coefficients is calculated by:

P(n|D, Ho) < P(D|n, Ho) P(n|Ho) ()

where 7 is the unknown parameter vector, D is the data, and Hj indicates the assumption of
Hy.? So the desired probability statement is a product of the likelihood function, P(D|n, Hy),

and some prior belief about the distribution of the quantity of interest, P(n|Hy).

The strongest argument for the inclusion of priors is that there often exists scientific
evidence before a statistical model is developed and it would be foolish to ignore such previous
knowledge (Tiao and Zellner 1964; Press 1989). The formal statement of a prior distribution
is an overt, non-ambiguous assertion within the model specification that the reader can
accept or dismiss (Box and Tiao 1973; Gelman et al. 1995). In addition, imprecise or vague
knowledge often justifies a diffuse, or even a bounded uniform, prior (Jeffreys 1961; Howson
and Urbach 1993), and certain probability models lead logically to particular forms of the
prior for mathematical reasons (Good 1950; Press 1989).

A primary payoff for applying this Bayesian framework to population cross-sectional data
is that it facilitates the explicit comparison of rival models about the system under study,
even if these models are not nested: one being a restricted case of the other. Suppose I'y
and I’ represent two competing hypotheses about the state of some unknown parameter, ~,
which together form a partition of the sample space: ' = I'; UT'y. Initially, prior probabilities
are assigned to each of the two outcomes: m; = p(y € I'1) and 7w = p(y € I'y). This allows
us to calculate the competing posterior distributions from the two priors and the likelihood
function: p; = p(y € I'1|D) and p, = p(y € ['y|D), where D represents the observed data.
The Bayes Factor combines the prior odds, 7 /79, and the posterior odds, p;/p., as evidence
for I'; versus I'y by calculating the ratio B = (71 /m2)/(p1/p2) (Berger 1985; Kass and Raftery
1989; Lee 1995). Thus the Bayes Factor is the odds favoring I'; versus I's given the observed

data incorporating both prior and posterior information.

The Bayesian philosophy is centered on the belief that population parameters are not
fixed quantities, rather they are realizations from an underlying distribution that can be

described with a posterior (post-data) distribution. By treating the observed data as a prior
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distribution, information about the parameters can be iteratively updated as new data are
observed. For population cross-sectional data, this gradual pooling avoids the single period
problem associated with frequentist analysis, and for data where there is evidence that the
serial time periods are important determinants of serial autocorrelation in the errors, a
Bayesian time series model can be specified (Broemeling and Shaarawy 1988; Poskitt 1986;
Sims 1988; West and Harrison 1989).

The Bayesian approach outlined here solves three primary problems with current state-
level empirical work: cross-sectional population studies are not generalizable across time,
they cannot validly apply inferential tests, and time series specifications are sensitive to the
flaws of the null hypothesis significance test. Finally, in the analysis of ecological systems and
U.S. states data, the idea that there is a single true parameter of interest that remains fixed
over some time period of interest is quite suspect. A model that explicitly accounts for the
stochastic process generating the population data across cases and time as a distributional

phenomenon is far more likely to be useful.

Conclusion

Authors have periodically lamented the paucity of serious academic attention by political
scientists to the politics of the states (Brace and Jewett 1995, Herson 1957; Jewell 1982). One
contributing reason for this historical disregard is attributable to the data. Political science
wholeheartedly embraced survey research as the dominant quantitative methodological focus
starting in the 1960s. The two primary reasons were a shift to the behavioral orientation
in the discipline, and the 1950 admonition by Robinson (reinforced by others) not to make

ecological inferences from aggregate data.

In this transition aggregate data, including state-level data, was subsumed in importance
by individual level data from surveys. As a result some lingering questions went unaddressed.
This article addresses an important but rarely discussed problem in the study of state poli-
tics: how should population models of state-level data be interpreted? The answer presented
here is two-fold. First, models based on population cross-sectional data do not accommodate
significance testing because the researcher already has the values that this procedure seeks.

Therefore summary statistics and their measures of uncertainty are completely sufficient
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measures of model quality in the possible presence of misspecification, autocorrelation, het-
eroscedasticity, endogeneity, and measurement error. However, since there is no supported
testing mechanism in the regimented manner of the null hypothesis significance test, arguing
the strength of evidence is a far more abstract task. Second, when the researcher seeks any
generalizability beyond a specific cross-section, a model specification that incorporates time
is required: either pooled or parameterized. However, time series models are particularly
affected by the deeply flawed and widely misunderstood null hypothesis significance testing

procedure which dominates empirical political science.

The best solutions to the problem of analyzing data collected at the level of U.S. state
population are to describe the general model fit and to embrace Bayesian methodologies.
Model assumptions, estimating procedures, and parametric characteristics all vary widely
and have a profound effect on the quality of the fit to the observed population data. It
is therefore important to use descriptive statistics to describe how closely the systematic
component fits these data. In addition, the Bayesian focus on describing and updating
posterior parameter distributions is exactly suited to the process of measuring and modeling
population behavior across the 50 states. The Bayesian analog of hypothesis testing, the
Bayes Factor, allows us to evaluate competing model specifications in a systematic search
for the best description of the structure of the underlying population trends. It is hoped
that this research note will focus some direction in state-level research towards this more

appropriate and potentially productive methodological approach.

Endnotes

YA core problem with the null hypothesis significance test is that researchers pretend
to select o levels a priori as in experiments based on Neyman-Pearson, but actually report
p-values (or worse yet, ranges of p-values indicated by asterisks) as the strength of evidence
(Gill 1999). This is because the discipline is cursed with Fisher’s arbitrary thresholds (even
he later recanted), despite the fact that there has never been a theoretical justification to
support 0.01 and 0.05. Because the test is performed once on a set of unique state-level
population data, the reported p-value is not a long run frequentist probability. Furthermore,

since only one model specification is tested, an infinite number of alternate specifications
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are not ruled out. A second problem with the null hypothesis significance test that pertains
directly to research in public policy is that there is no explicitly modeled consequence of
making the wrong decision (Gill and Meier 2000; Pollard and Richardson 1987). Unlike
purely academic research, decisions taking place in policy analysis and implementation have
direct consequences for citizens, employees, managers, and agencies in general. Yet hypoth-
esis testing confuses inference and decision-making since it “does not allow for the costs of
possible wrong actions to be taken into account in any precise way” (Barnett 1973). Decision
theory is the logical adjunct to hypothesis testing that formalizes the cost of alternatives by
explicitly defining the cost of making the wrong decision by specifying a loss function and

associated risk for each alternative (Berger 1985; Pollard 1986).

2If for some reason the arc-tangent, inverse, square-root population effect of state-level
GDP was important in a linear model, then we would see the opposite effect: a small variance

for this model parameter.

3Proportionality is used here instead of equality because the P(D, Hp) term in Bayes

law, P(n|D, Hy) = ]Ij((g”g‘;))P(Dm, H,), does not depend on 1 and can therefore be dropped.

Bayes law is true whether in the context of Bayesian or frequentist statistical models, the
difference being that Bayesians use this principle to update prior knowledge with new ob-

servations.
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