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Preface

This book is intended to serve several needs. First (and perhaps foremost), it is

supposed to be an introduction to mathematical principles for incoming social

science graduate students. For this reason, there is a large set of examples

(83 of them, at last count) drawn from various literatures including sociology,

political science, anthropology, psychology, public policy, communications,

and geography. Almost no example is produced from “hypothetical data.”

This approach is intended not only to motivate specific mathematical principles

and practices, but also to introduce the way that social science researchers use

these tools. With this approach the topics presumably retain needed relevance.

The design of the book is such that this endeavor can be a semester-long ad-

junct to another topic like data analysis or it can support the prefresher “math-

camp” approach that is becoming increasingly popular. Second, this book can

also serve as a single reference work where multiple books would ordinarily

be needed. To support this function there is extensive indexing and referencing

designed to make it easy to find topics. Also in support of this purpose, there

are some topics that may not be suitable for course work that are deliberately

included for this purpose (i.e., things like calculus on trigonometric functions

and advanced linear algebra topics). Third, the format is purposely made con-

xxi



xxii Preface

ducive to self-study. Many of us missed or have forgotten various mathematical

topics and then find we need them later.

The main purpose of the proposed work is to address an educational defi-

ciency in the social and behavioral sciences. The undergraduate curriculum

in the social sciences tends to underemphasize mathematical topics that are

then required by students at the graduate level. This leads to some discomfort

whereby incoming graduate students are often unprepared for and uncomfort-

able with the necessary mathematical level of research in these fields. As a

result, the methodological training of graduate students increasingly often be-

gins with intense “prequel” seminars wherein basic mathematical principles are

taught in short (generally week-long) programs just before beginning the regu-

lar first-year course work. Usually these courses are taught from the instructor’s

notes, selected chapters from textbooks, or assembled sets of monographs or

books. There is currently no tailored book-length work that specifically ad-

dresses the mathematical topics of these programs. This work fills this need by

providing a comprehensive introduction to the mathematical principles needed

by modern research social scientists. The material introduces basic mathemat-

ical principles necessary to do analytical work in the social sciences, starting

from first principles, but without unnecessary complexity. The core purpose

is to present fundamental notions in standard notation and standard language

with a clear, unified framework throughout

Although there is an extensive literature on mathematical and statistical meth-

ods in the social sciences, there is also a dearth of introduction to the underlying

language used in these works, exacerbating the fact that many students in social

science graduate programs enter with an undergraduate education that contains

no regularized exposure to the mathematics they will need to succeed in grad-

uate school.

Actually, the book is itself a prerequisite, so for obvious reasons the prerequi-

sites to this prerequisite are minimal. The only required material is knowledge of

high school algebra and geometry. Most target students will have had very little
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mathematical training beyond this modest level. Furthermore, the first chap-

ter is sufficiently basic that readers who are comfortable with only arithmetic

operations on symbolic quantities will be able to work through the material.

No prior knowledge of statistics, probability, or nonscalar representations will

be required. The intended emphasis is on a conceptual understanding of key

principles and in their subsequent application through examples and exercises.

No proofs or detailed derivations will be provided.

The book has two general divisions reflecting a core component along with

associated topics. The first section comprises six chapters and is focused on

basic mathematical tools, matrix algebra, and calculus. The topics are all essen-

tial, deterministic, mathematical principles. The primary goal of this section is

to establish the mathematical language used in formal theory and mathematical

analysis, as practiced in the social sciences. The second section, consisting of

three chapters, is designed to give the background required to proceed in stan-

dard empirical quantitative analysis courses such as social science statistics and

mathematical analysis for formal theory.

Although structure differs somewhat by chapter, there is a general format

followed within each. There is motivation given for the material, followed by a

detailed exposition of the concepts. The concepts are illustrated with examples

that social scientists care about and can relate to. This last point is not trivial. A

great many books in these areas center on engineering and biology examples,

and the result is often reduced reader interest and perceived applicability in

the social sciences. Therefore, every example is taken from the social and

behavioral sciences. Finally, each chapter has a set of exercises designed to

reinforce the primary concepts.

There are different ways to teach from this book. The obvious way is to cover

the first six chapters sequentially, although aspects of the first two chapters may

be skipped for a suitably prepared audience. Chapter 2 focuses on trigonometry,

and this may not be needed for some programs. The topics in Chapters 7, 8,

and 9 essentially constitute a “pre-statistics” course for social science graduate
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students. This may or may not be useful for specific purposes. The last chapter

on Markov chains addresses a topic that has become increasingly important.

This tool is used extensively in both mathematical modeling and Bayesian

statistics. In addition, this chapter is a useful way to practice and reinforce the

matrix algebra principles covered in Chapters 3 and 4. This book can also be

used in a “just in time” way whereby a course on mathematical modeling or

statistics proceeds until certain topics in matrix algebra, calculus, or random

variables are needed.

As noted, one intended use of this book is through a “math-camp” approach

where incoming graduate students are given a pre-semester intensive introduc-

tion to the mathematical methods required for their forthcoming study. This

is pretty standard in economics and is increasingly done in political science,

sociology, and other fields. For this purpose, I recommend one of two possible

abbreviated tracks through the material:

Three-Day Program

• Chapter 1: The Basics.

• Chapter 3: Linear Algebra: Vectors, Matrices, and Operations.

• Chapter 5: Elementary Scalar Calculus.

Five-Day Program

• Chapter 1: The Basics.

• Chapter 3: Linear Algebra: Vectors, Matrices, and Operations.

• Chapter 5: Elementary Scalar Calculus.

• Chapter 7: Probability Theory.

• Chapter 8: Random Variables.

The five-day program focuses on a pre-statistics curriculum after the intro-

ductory mathematics. If this is not appropriate or desired, then the continuation

chapters on linear algebra and calculus (Chapters 4 and 6) can be substituted for
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the latter two chapters. Conversely, a lighter pre-statistics approach that does

not need to focus on theory involving calculus might look like the following:

Standard Pre-Statistics Program

• Chapter 1: The Basics.

• Chapter 3: Linear Algebra: Vectors, Matrices, and Operations.

• Chapter 7: Probability Theory.

• Chapter 8: Random Variables.

This program omits Chapter 5 from the previous listing but sets students up

for such standard regression texts as Hanushek and Jackson (1977), Gujarati

(1995), Neter et al. (1996), Fox (1997), or the forthcoming text in this series

by Schneider and Jacoby. For an even “lighter” version of this program, parts

of Chapter 3 could be omitted.

Each chapter is accompanied by a set of exercises. Some of these are purely

mechanical and some are drawn from various social science publications. The

latter are designed to provide practice and also to show the relevance of the per-

tinent material. Instructors will certainly want to tailor assignments rather than

require the bulk of these problems. In addition, there is an instructor’s manual

containing answers to the exercises available from Cambridge University Press.

It is a cliche to say, but this book was not created in a vacuum and numerous

people read, perused, commented on, criticized, railed at, and even taught from

the manuscript. These include Attic Access, Mike Alvarez, Maggie Bakhos,

Ryan Bakker, Neal Beck, Scott Desposato, James Fowler, Jason Gainous, Scott

Gartner, Hank Heitowit, Bob Huckfeldt, Bob Jackman, Marion Jagodka, Renee

Johnson, Cindy Kam, Paul Kellstedt, Gary King, Jane Li, Michael Martinez,

Ryan T. Moore, Will Moore, Elise Oranges, Bill Reed, Marc Rosenblum, Johny

Sebastian, Will Terry, Les Thiele, Shawn Treier, Kevin Wagner, Mike Ward, and

Guy Whitten. I apologize to anyone inadvertently left off this list. In particular,

I thank Ed Parsons for his continued assistance and patience in helping get

this project done. I have also enjoyed the continued support of various chairs,
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deans, and colleagues at the University of California–Davis, the ICPSR Summer

Program at the University of Michigan, and at Harvard University. Any errors

that may remain, despite this outstanding support network, are entirely the

fault of the author. Please feel free to contact me with comments, complaints,

omissions, general errata, or even praise (jgill@ucdavis.edu).



1

The Basics

1.1 Objectives

This chapter gives a very basic introduction to practical mathematical and arith-

metic principles. Some readers who can recall their earlier training in high

school and elsewhere may want to skip it or merely skim over the vocabulary.

However, many often find that the various other interests in life push out the

assorted artifacts of functional expressions, logarithms, and other principles.

Usually what happens is that we vaguely remember the basic ideas without

specific properties, in the same way that we might remember that the assigned

reading of Steinbeck’s Grapes of Wrath included poor people traveling West

without remembering all of the unfortunate details. To use mathematics ef-

fectively in the social sciences, however, it is necessary to have a thorough

command over the basic mathematical principles in this chapter.

Why is mathematics important to social scientists? There are two basic

reasons, where one is more philosophical than the other. A pragmatic reason

is that it simply allows us to communicate with each other in an orderly and

systematic way; that is, ideas expressed mathematically can be more carefully

defined and more directly communicated than with narrative language, which

is more susceptible to vagueness and misinterpretation. The causes of these

1
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effects include multiple interpretations of words and phrases, near-synonyms,

cultural effects, and even poor writing quality.

The second reason is less obvious, and perhaps more debatable in social

science disciplines. Plato said “God ever geometrizes” (by extension, the

nineteenth-century French mathematician Carl Jacobi said “God ever arithme-

tizes”). The meaning is something that humans have appreciated since before

the building of the pyramids: Mathematics is obviously an effective way to de-

scribe our world. What Plato and others noted was that there is no other way to

formally organize the phenomena around us. Furthermore, awesome physical

forces such as the movements of planets and the workings of atoms behave in

ways that are described in rudimentary mathematical notation.

What about social behavior? Such phenomena are equally easy to observe but

apparently more difficult to describe in simple mathematical terms. Substantial

progress dates back only to the 1870s, starting with economics, and followed

closely by psychology. Obviously something makes this more of a challenge.

Fortunately, some aspects of human behavior have been found to obey simple

mathematical laws: Violence increases in warmer weather, overt competition

for hierarchical place increases with group size, increased education reduces

support for the death penalty, and so on. These are not immutable, constant

forces, rather they reflect underlying phenomena that social scientists have

found and subsequently described in simple mathematical form.

1.2 Essential Arithmetic Principles

We often use arithmetic principles on a daily basis without considering that they

are based on a formalized set of rules. Even though these rules are elementary,

it is worth stating them here.

For starters, it is easy to recall that negative numbers are simply positive num-

bers multiplied by −1, that fractions represent ratios, and that multiplication

can be represented in several ways (a× b = (a)(b) = a · b = a∗ b). Other rules

are more elusive but no less important. For instance, the order of operations
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gives a unique answer for expressions that have multiple arithmetic actions.

The order is (1) perform operations on individual values first, (2) evaluate par-

enthetical operations next, (3) do multiplications and divisions in order from

left to right and, finally, (4) do additions and subtractions from left to right. So

we would solve the following problem in the specified order:

23 + 2 × (2 × 5 − 4)2 − 30 = 8 + 2 × (2 × 5 − 4)2 − 30

= 8 + 2 × (10 − 4)2 − 30

= 8 + 2 × (6)2 − 30

= 8 + 2 × 36 − 30

= 8 + 72 − 30

= 50.

In the first step there is only one “atomic” value to worry about, so we take

2 to the third power first. Because there are no more of these, we proceed to

evaluating the operations in parentheses using the same rules. Thus 2 × 5 − 4

becomes 6 before it is squared. There is one more multiplication to worry

about followed by adding and subtracting from left to right. Note that we

would have gotten a different answer if we had not followed these rules.

This is important as there can be only one mathematically correct answer to

such questions. Also, when parentheses are nested, then the order (as implied

above) is to start in the innermost expression and work outward. For instance,

(((2 + 3) × 4) + 5) = (((5) × 4) + 5) = ((20) + 5) = 25.

Zero represents a special number in mathematics. Multiplying by zero pro-

duces zero and adding zero to some value leaves it unchanged. Generally the

only thing to worry about with zero is that dividing any number by zero (x/0 for

any x) is undefined. Interestingly, this is true for x = 0 as well. The number

1 is another special number in mathematics and the history of mathematics, but

it has no associated troublesome characteristic.

Some basic functions and expressions will be used liberally in the text without
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further explanation. Fractions can be denoted x/y or x
y . The absolute value

of a number is the positive representation of that number. Thus |x| = x if x is

positive and |x| is −x if x is negative. The square root of a number is a radical

of order two:
√
x = 2

√
x = x

1

2 , and more generally the principle root is

r
√
x = x

1

r

for numbers x and r. In this general case x is called the radican and r is called

the index. For example,

3
√

8 = 8
1

3 = 2

because 23 = 8.

1.3 Notation, Notation, Notation

One of the most daunting tasks for the beginning social scientist is to make

sense of the language of their discipline. This has two general dimensions:

(1) the substantive language in terms of theory, field knowledge, and socialized

terms; and (2) the formal means by which these ideas are conveyed. In a great

many social science disciplines and subdisciplines the latter is the notation of

mathematics. By notation we do not mean the use of specific terms per

se (see Section 1.4 for that discussion); instead we mean the broad use of

symbology to represent values or levels of phenomena; interrelations among

these, and a logical, consistent manipulation of this symbology.

Why would we use mathematics to express ideas about ideas in anthropology,

political science, public policy, sociology, psychology, and related disciplines?

Precisely because mathematics let us exactly convey asserted re-

lationships between quantities of interest. The key word in that last

sentence is exactly : We want some way to be precise in claims about how

some social phenomenon affects another social phenomenon. Thus the pur-

chase of mathematical rigor provides a careful and exacting way to analyze and

discuss the things we actually care about.
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F Example 1.1: Explaining Why People Vote. This is a simple example

from voting theory. Anthony Downs (1957) claimed that a rational voter

(supposedly someone who values her time and resources) would weigh the

cost of voting against the gains received from voting. These rewards are

asserted to be the value from a preferred candidate winning the election times

the probability that her vote will make an actual difference in the election.

It is common to “measure” the difference between cost and reward as the

utility that the person receives from the act. “Utility” is a word borrowed

from economists that simply specifies an underlying preference scale that

we usually cannot directly see. This is generally not complicated: I will get

greater utility from winning the state lottery than I will from winning the

office football pool, or I will get greater utility from spending time with my

friends than I will from mowing the lawn.

Now we should make this idea more “mathematical” by specifying a rele-

vant relationship. Riker and Ordeshook (1968) codified the Downsian model

into mathematical symbology by articulating the following variables for an

individual voter given a choice between two candidates:

R = the utility satisfaction of voting

P = the actual probability that the voter will

affect the outcome with her particular vote

B = the perceived difference in benefits between the two

candidates measured in utiles (units of utility): B1 −B2

C = the actual cost of voting in utiles (i.e., time, effort, money).

Thus the Downsian model is thus represented as

R = PB − C.

This is an unbelievably simple yet powerful model of political participa-

tion. In fact, we can use this statement to make claims that would not

be as clear or as precise if described in descriptive language

alone. For instance, consider these statements:
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• The voter will abstain if R < 0.

• The voter may still not vote even if R > 0 if there exist other competing

activities that produce a higher R.

• If P is very small (i.e., it is a large election with many voters), then it is

unlikely that this individual will vote.

The last statement leads to what is called the paradox of participation :

If nobody’s vote is decisive, then why would anyone vote? Yet we can see

that many people actually do show up and vote in large general elections.

This paradox demonstrates that there is more going on than our simple model

above.

The key point from the example above is that the formalism such mathemati-

cal representation provides gives us a way to say more exact things about social

phenomena. Thus the motivation for introducing mathematics into the study of

the social and behavioral sciences is to aid our understanding and improve the

way we communicate substantive ideas.

1.4 Basic Terms

Some terms are used ubiquitously in social science work. A variable is just a

symbol that represents a single number or group of numbers. Often variables

are used as a substitution for numbers that we do not know or numbers that we

will soon observe from some political or social phenomenon. Most frequently

these are quantities like X , Y , a, b, and so on. Oddly enough, the modern

notion of a variable was not codified until the early nineteenth century by the

German mathematician Lejeune Dirichlet. We also routinely talk about data:

collections of observed phenomenon. Note that data is plural; a single point

is called a datum or a data point.

There are some other conventions from mathematics and statistics (as well

as some other fields) that are commonly used in social science research as well.

Some of these are quite basic, and social scientists speak this technical language
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fluently. Unless otherwise stated, variables are assumed to be defined on the

Cartesian coordinate system .† If we are working with two variables x and

y, then there is an assumed perpendicular set of axes where the x-axis (always

given horizontally) is crossed with the y-axis (usually given vertically), such

that the number pair (x, y) defines a point on the two-dimensional graph. There

is actually no restriction to just two dimensions; for instance a point in 3-space

is typically notated (x, y, z).

F Example 1.2: Graphing Ideal Points in the Senate. One very active

area of empirical research in political science is the estimation and subsequent

use of legislative ideal points [see Jackman (2001), Londregan (2000),

Poole and Rosenthal (1985, 1997)]. The objective is to analyze a member’s

voting record with the idea that this member’s ideal policy position in policy-

space can be estimated. This gets really interesting when the entire chamber

(House, Senate, Parliament) is estimated accordingly, and various voting

outcomes are analyzed or predicted.

Figure 1.1 shows approximate ideal points for Ted Kennedy and Oren

Hatch on two proposed projects (it is common to propose Hatch as the foil

for Kennedy). Senator Hatch is assumed to have an ideal point in this two-

dimensional space at x = 5, y = 72, and Ted Kennedy is assumed to have

an ideal point at x = 89, y = 17. These values are obtained from interest

group rankings provided by the League of Conservation voters (2003) and

the National Taxpayers Union (2003). We can also estimate the ideal points

of other Senators in this way: One would guess that Trent Lott would be

closer to Hatch than Kennedy, for instance.

† Alternatives exist such as “spherical space,” where lines are defined on a generalization of

circular space so they cannot be parallel to each other and must return to their point of origin,

as well as Lobachevskian geometry and Kleinian geometry. These and other related systems

are not generally useful in the social sciences and will therefore not be considered here with the

exception of general polar coordinates in Chapter 2.
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Fig. 1.1. Two Ideal Points in the Senate
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Now consider a hypothetical trade-off between two bills competing for

limited federal resources. These are appropriations (funding) for new na-

tional park lands, and a tax cut (i.e., national resources protection and devel-

opment versus reducing taxes and thus taking in less revenue for the federal

government). If there is a greater range of possible compromises, then other

in-between points are possible. The best way to describe the possible space

of solutions here is on a two-dimensional Cartesian coordinate system. Each

Senator is assumed to have an ideal spending level for the two projects

that trades off spending in one dimension against another: the level he or

she would pick if they controlled the Senate completely. By convention we

bound this in the two dimensions from 0 to 100.
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The point of Figure 1.1 is to show how useful the Cartesian coordinate

system is at describing positions along political and social variables. It might

be more crowded, but it would not be more complicated to map the entire

Senate along these two dimensions. In cases where more dimensions are

considered, the graphical challenges become greater. There are two choices:

show a subset on a two- or three-dimensional plot, or draw combinations of

dimensions in a two-dimensional format by pairing two at a time.

Actually, in this Senate example, the use of the Cartesian coordinate system

has been made quite restrictive for ease of analysis in this case. In the more

typical, and more general, setting both the x-axis and the y-axis span negative

infinity to positive infinity (although we obviously cannotdraw them that way),

and the space is labeled R
2 to denote the crossing of two real lines. The

real line is the line from minus infinity to positive infinity that contains the real

numbers: numbers that are expressible in fractional form (2/5, 1/3, etc.) as well

as those that are not because they have nonrepeating and infinitely continuing

decimal values. There are therefore an infinite quantity of real numbers for any

interval on the real line because numbers like
√

2 exist without “finishing” or

repeating patterns in their list of values to the right of the decimal point (
√

2 =

1.41421356237309504880168872420969807856967187537694807317 . . .).

It is also common to define various sets along the real line. These sets can be

convex or nonconvex. A convex set has the property that for any two members

of the set (numbers)x1 andx2, the numberx3 = δx1+(1−δ)x2 (for 0 ≤ δ ≤ 1)

is also in the set. For example, if δ = 1
2 , then x3 is the average (the mean, see

below) of x1 and x2.

In the example above we would say that Senators are constrained to express

their preferences in the interval [0 : 100], which is commonly used as a measure

of ideology or policy preference by interest groups that rate elected officials

[such as the Americans for Democratic Action (ADA), and the American

Conservative Union (ACU)]. Interval notation is used frequently in math-

ematical notation, and there is only one important distinction: Interval ends
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can be “open” or “closed.” An open interval excludes the end-point denoted

with parenthetical forms “(” and “)” whereas the closed interval denoted with

bracket forms “[” and “]” includes it (the curved forms “{” and “}” are usually

reserved for set notation). So, in altering our Senate example, we have the

following one-dimensional options for x (also for y):

open on both ends: (0:100), 0 < x < 100

closed on both ends: [0:100], 0 ≤ x ≤ 100

closed left, open right [0:100), 0 ≤ x < 100

open left, closed right (0:100], 0 < x ≤ 100

Thus the restrictions on δ above are that it must lie in [0:1]. These intervals

can also be expressed in comma notation instead of colon notation :

[0, 100].

1.4.1 Indexing and Referencing

Another common notation is the technique of indexing observations on some

variable by the use of subscripts. If we are going to list some value like years

served in the House of Representatives (as of 2004), we would not want to use

some cumbersome notation like

Abercrombie = 14

Acevedo-Vila = 14

Ackerman = 21

Aderholt = 8

...

...

Wu = 6

Wynn = 12

Young = 34

Young = 32

which would lead to awkward statements like “Abercrombie’s years in office”

+ “Acevedo-Vila’s years in office”. . . + “Young’s years in office” to express
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mathematical manipulation (note also the obvious naming problem here as well,

i.e., delineating between Representative Young of Florida and Representative

Young of Alaska). Instead we could just assign each member ordered alphabet-

ically to an integer 1 through 435 (the number of U.S. House members) and then

index them by subscript: X = {X1, X2, X3, . . . , X433, X434, X435}. This is

a lot cleaner and more mathematically useful. For instance, if we wanted to

calculate the mean (average) time served, we could simply perform:

X =
1

435
(X1 +X2 +X3 + · · · +X433 +X434 +X435)

(the bar over X denotes that this average is a mean, something we will see

frequently). Although this is cleaner and easier than spelling names or some-

thing like that, there is an even nicer way of indicating a mean calculation that

uses the summation operator. This is a large version of the Greek letter sigma

where the starting and stopping points of the addition process are spelled out

over and under the symbol. So the mean House seniority calculation could be

specified simply by

X̄ =
1

435

435
∑

i=1

Xi,

where we say that i indexes X in the summation. One way to think of this

notation is that
∑

is just an adding “machine” that instructs us whichX to start

with and which one to stop with. In fact, if we set n = 435, then this becomes

the simple (and common) form

X̄ =
1

n

n
∑

i=1

Xi.

More formally,
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The Summation Operator

� If X1, X2, . . . , Xn are n numerical values,

� then their sum can be represented by
∑n

i=1Xi,

� where i is an indexing variable to indicate the starting and

stopping points in the series X1, X2, . . . , Xn.

A related notation is the product operator. This is a slightly different

“machine” denoted by an uppercase Greek pi that tells us to multiply instead

of add as we did above:

n
∏

i=1

Xi

(i.e., it multiplies the n values together). Here we also use i again as the index,

but it is important to note that there is nothing special about the use of i; it is

just a very common choice. Frequent index alternatives include j, k, l, and m.

As a simple illustration, suppose p1 = 0.2, p2 = 0.7, p3 = 0.99, p4 = 0.99,

p5 = 0.99. Then

5
∏

j=1

pj = p1 · p2 · p3 · p4 · p5

= (0.2)(0.7)(0.99)(0.99)(0.99)

= 0.1358419.

Similarly, the formal definition for this operator is given by
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The Product Operator

� If X1, X2, . . . , Xn are n numerical values,

� then their product can be represented by
∏n

i=1Xi,

� where i is an indexing variable to indicate the starting and

stopping points in the series X1, X2, . . . , Xn.

Subscripts are used because we can immediately see that they are not a

mathematical operation on the symbol being modified. Sometimes it is also

convenient to index using a superscript. To distinguish between a superscript

as an index and an exponent operation, brackets or parentheses are often used.

So X2 is the square of X , but X [2] and X(2) are indexed values.

There is another, sometimes confusing, convention that comes from six

decades of computer notation in the social sciences and other fields. Some

authors will index values without the subscript, as in X1, X2, . . ., or differing

functions (see Section 1.5 for the definition of a function) without subscripting

according to f1, f2, . . .. Usually it is clear what is meant, however.

1.4.2 Specific Mathematical Use of Terms

The use of mathematical terms can intimidate readers even when the author

does not mean to do so. This is because many of them are based on the Greek

alphabet or strange versions of familiar symbols (e.g., ∀ versus A). This does

not mean that the use of these symbols should be avoided for readability. Quite

the opposite; for those familiar with the basic vocabulary of mathematics such

symbols provide a more concise and readable story if they can clearly summarize

ideas that would be more elaborate in narrative. We will save the complete list
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of Greek idioms to the appendix and give others here, some of which are critical

in forthcoming chapters and some of which are given for completeness.

Some terms are almost universal in their usage and thus are important to

recall without hesitation. Certain probability and statistical terms will be given

as needed in later chapters. An important group of standard symbols are those

that define the set of numbers in use. These are

Symbol Explanation

R the set of real numbers

R
+ the set of positive real numbers

R
− the set of negative real numbers

I the set of integers

I+ or Z+ the set of positive integers

I− or Z+ the set of negative integers

Q the set of rational numbers

Q+ the set of positive rational numbers

Q− the set of negative rational numbers

C the set of complex numbers (those based on
√
−1).

Recall that the real numbers take on an infinite number of values: rational

(expressible in fraction form) and irrational (not expressible in fraction form

with values to the right of the decimal point, nonrepeating, like pi). It is inter-

esting to note that there are an infinite number of irrationals and every irrational

falls between two rational numbers. For example,
√

2 is in between 7/5 and

3/2. Integers are positive and negative (rational) numbers with no decimal

component and sometimes called the “counting numbers.” Whole numbers

are positive integers along with zero, and natural numbers are positive integers

without zero. We will not generally consider here the set of complex num-

bers, but they are those that include the imaginary number: i =
√
−1, as in

√
−4 = 2

√
−1 = 2i. In mathematical and statistical modeling it is often

important to remember which of these number types above is being considered.

Some terms are general enough that they are frequently used with state-
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ments about sets or with standard numerical declarations. Other forms are

more obscure but do appear in certain social science literatures. Some reason-

ably common examples are listed in the next table. Note that all of these are

contextual, that is, they lack any meaning outside of sentence-like statements

with other symbols.

Symbol Explanation

¬ logical negation statement

∈ is an element of, as in 3 ∈ I+

3 such that

∴ therefore

∵ because

=⇒ logical “then” statement

⇐⇒ if and only if, also abbreviated “iff”

∃ there exists

∀ for all

G between

‖ parallel

∠ angle

Also, many of these symbols can be negated, and negation is expressed in

one of two ways. For instance, ∈ means “is an element of,” but both 6∈ and ¬ ∈
mean “is not an element of.” Similarly, ⊂ means “is a subset of,” but 6⊂ means

“is not a subset of.”

Some of these terms are used in a very linguistic fashion: 3−4 ∈ R
− ∵ 3 <

4. The “therefore” statement is usually at the end of some logic: 2 ∈ I+ ∴

2 ∈ R
+. The last three in this list are most useful in geometric expressions and

indicate spatial characteristics. Here is a lengthy mathematical statement using

most of these symbols: ∀x ∈ I+ and x¬prime, ∃y ∈ I+ 3 x/y ∈ I+. So

what does this mean? Let’s parse it: “For all numbers x such that x is a positive

integer and not a prime number, there exists a y that is a positive integer such

that x divided by y is also a positive integer.” Easy, right? (Yeah, sure.) Can
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you construct one yourself?

Another “fun” example is x ∈ I and x 6= 0 =⇒ x ∈ I− or I+. This

says that if x is a nonzero integer, it is either a positive integer or a negative

integer. Consider this in pieces. The first part, x ∈ I, stipulates that x is “in”

the group of integers and cannot be equal to zero. The right arrow, =⇒, is a

logical consequence statement equivalent to saying “then.” The last part gives

the result, either x is a negative integer or a positive integer (and nothing else

since no alternatives are given).

Another important group of terms are related to the manipulation of sets of

objects, which is an important use of mathematics in social science work (sets

are simply defined groupings of individual objects; see Chapter 7, where sets

and operations on sets are defined in detail). The most common are

Symbol Explanation

∅ the empty set

(sometimes used with the Greek phi: φ)

∪ union of sets

∩ intersection of sets

\ subtract from set

⊂ subset

{ complement

These allow us to make statements about groups of objects such as A ⊂ B

for A = {2, 4},B = {2, 4, 7}, meaning that the set A is a smaller grouping of

the larger setB. We could also observe that theA results from removing seven

from B.

Some symbols, however, are “restricted” to comparing or operating on strictly

numerical values and are not therefore applied directly to sets or logic expres-

sions. We have already seen the sum and product operators given by the symbols
∑

and
∏

accordingly. The use of ∞ for infinity is relatively common even

outside of mathematics, but the next list also gives two distinct “flavors” of
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infinity. Some of the contexts of these symbols we will leave to remaining

chapters as they deal with notions like limits and vector quantities.

Symbol Explanation

∝ is proportional to
.
= equal to in the limit (approaches)

⊥ perpendicular

∞ infinity

∞+, +∞ positive infinity

∞−, −∞ negative infinity
∑

summation
∏

product

b c floor: round down to nearest integer

d e ceiling: round up to nearest integer

| given that: X |Y = 3

Related to these is a set of functions relating maximum and minimum values.

Note the directions of ∨ and ∧ in the following table.

Symbol Explanation

∨ maximum of two values

max() maximum value from list

∧ minimum of two values

min() minimum value from list

argmax
x

f(x) the value of x that maximizes the function f(x)

argmin
x

f(x) the value of x that minimizes the function f(x)

The latter two are important but less common functions. Functions are for-

mally defined in the next section, but we can just think of them for now as

sets of instructions for modifying input values (x2 is an example function that

squares its input). As a simple example of the argmax function, consider

argmax
x∈R

x(1 − x),

which asks which value on the real number line maximizes x(1 − x). The

answer is 0.5 which provides the best trade-off between the two parts of the
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function. The argmin function works accordingly but (obviously) operates on

the function minimum instead of the function maximum.

These are not exhaustive lists of symbols, but they are the most fundamental

(many of them are used in subsequent chapters). Some literatures develop

their own conventions about symbols and their very own symbols, such as a to

denote a mathematical representation of a game and m to indicate geometric

equivalence between two objects, but such extensions are rare in the social

sciences.

1.5 Functions and Equations

A mathematical equation is a very general idea. Fundamentally, an equation

“equates” two quantities: They are arithmetically identical. So the expression

R = PB − C is an equation because it establishes that R and PB − C are

exactly equal to each other. But the idea of a mathematical sentence is more

general (less restrictive) than this because we can substitute other relations for

equality, such as

Symbol Meaning

< less than

≤ less than or equal to

� much less than

> greater than

≥ greater than or equal to

� much greater than

≈ approximately the same

∼= approximately equal to

/ approximately less than (also .)

' approximately greater than (also &)

≡ equivalent by assumption

So, for example, if we say that X = 1, Y = 1.001 and Z = 0.002, then the

following statements are true:
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X ≤ 1 X ≥ 1 X � 1000 X � −1000

X < 2 X > 0 X ∼= 0.99. X ≈ 1.0001X

X ≈ Y Y / X + Z X + Z ' Y

X + 0.001 ≡ Y X > Y − Z X ∝ 2Y .

The purpose of the equation form is generally to express more than one set

of relations. Most of us remember the task of solving “two equations for two

unknowns.” Such forms enable us to describe how (possibly many) variables

are associated to each other and various constants. The formal language of

mathematics relies heavily on the idea that equations are the atomic units of

relations.

What is a function? A mathematical function is a “mapping” (i.e., specific

directions), which gives a correspondence from one measure onto exactly one

other for that value. That is, in our context it defines a relationship between

one variable on the x-axis of a Cartesian coordinate system and an operation

on that variable that can produce only one value on the y-axis. So a function is

a mapping from one defined space to another, such as f : R → R, in which

f maps the real numbers to the real numbers (i.e., f(x) = 2x), or f : R → I,

in which f maps the real numbers to the integers (i.e., f(x) = round(x)).

This all sounds very

technical, but it is not.

One way of thinking

about functions is that

they are a “machine”

for transforming val-

ues, sort of a box as in

the figure to the right.

A Function Represented

f()x f(x)

To visualize this we can think about values,x, going in and some modification

of these values, f(x), coming out where the instructions for this process are
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Table 1.1. Tabularizing f(x) = x2 − 1

x f(x) = x2
− 1

1 0
3 8

−1 0
10 99
4 15

√

3 2

contained in the “recipe” given by f().

Consider the following function operating on the variable x:

f(x) = x2 − 1.

This simply means that the mapping from x to f(x) is the process that squares

x and subtracts 1. If we list a set of inputs, we can define the corresponding set

of outputs, for example, the paired values listed in Table 1.1.

Here we used the f() notation for a function (first codified by Euler in the

eighteenth century and still the most common form used today), but other forms

are only slightly less common, such as: g(), h(), p(), and u(). So we could

have just as readily said:

g(x) = x2 − 1.

Sometimes the additional notation for a function is essential, such as when

more than one function is used in the same expression. For instance, functions

can be “nested” with respect to each other (called a composition):

f ◦ g = f(g(x)),

as in g(x) = 10x and f(x) = x2, so f ◦ g = (10x)2 (note that this is different

than g ◦ f , which would be 10(x2)). Function definitions can also contain

wording instead of purely mathematical expressions and may have conditional
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aspects. Some examples are

f(y) =











1
y if y 6= 0 and y is rational

0 otherwise

p(x) =















(6 − x)−
5

3 /200 + 0.1591549 for θ ∈ [0:6)

1
2π

1
“

1+( x−6

2 )
2

” for θ ∈ [6:12].

Note that the first example is necessarily a noncontinuous function whereas the

second example is a continuous function (but perhaps not obviously so). Recall

thatπ is notation for 3.1415926535. . . ,which is often given inaccurately as just

3.14 or even 22/7. To be more specific about such function characteristics, we

now give two important properties of a function.

Properties of Functions, Given for g(x) = y

� A function is continuous if it has no “gaps” in its

mapping from x to y.

� A function is invertible if its reverse operation exists:

g−1(y) = x, where g−1(g(x)) = x.

It is important to distinguish between a function and a relation. A function

must have exactly one value returned by f(x) for each value of

x, whereas a relation does not have this restriction. One way to test whether

f(x) is a function or, more generally, a relation is to graph it in the Cartesian

coordinate system (x versus y in orthogonal representation) and see if there

is a vertical line that can be drawn such that it intersects the function at two

values (or more) of y for a single value of x. If this occurs, then it is not a

function. There is an important distinction to be made here. The solution

to a function can possibly have more than one corresponding value of x, but a
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function cannot have alternate values of y for a given x. For example, consider

the relation y2 = 5x, which is not a function based on this criteria. We can see

this algebraically by taking the square root of both sides, ±y =
√

5x, which

shows the non-uniqueness of the y values (as well as the restriction to positive

values ofx). We can also see this graphically in Figure 1.2, wherex values from

0 to 10 each give two y values (a dotted line is given at (x = 4, y = ±
√

20) as

an example).

Fig. 1.2. A Relation That Is Not a Function
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The modern definition of a function is also attributable to Dirichlet: If vari-

ables x and y are related such that every acceptable value of x has a correspond-

ing value of y defined by a rule, then y is a function of x. Earlier European

period notions of a function (i.e., by Leibniz, Bernoulli , and Euler) were more

vague and sometimes tailored only to specific settings.
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Fig. 1.3. Relating x and f(x)
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Often a function is explicitly defined as a mapping between elements of

an ordered pair : (x, y), also called a relation. So we say that the function

f(x) = y maps the ordered pair x, y such that for each value of x there is

exactly one y (the order of x before y matters). This was exactly what we saw

in Table 1.1, except that we did not label the rows as ordered pairs. As a more

concrete example, the following set of ordered pairs:

{[1,−2], [3, 6], [7, 46]}

can be mapped by the function: f(x) = x2−3. If the set of x values is restricted

to some specifically defined set, then obviously so is y. The set of x values

is called the domain (or support) of the function and the associated set of y

values is called the range of the function. Sometimes this is highly restrictive

(such as to specific integers) and sometimes it is not. Two examples are given in

Figure 1.3, which is drawn on the (now) familiar Cartesian coordinate system.

Here we see that the range and domain of the function are unbounded in the

first panel (although we clearly cannot draw it all the way until infinity in both
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directions), and the domain is bounded by 0 and 6 in the second panel.

A function can also be even or odd, defined by

a function is “odd” if: f(−x) = −f(x)

a function is “even” if: f(−x) = f(x).

So, for example, the squaring function f(x) = x2 and the absolute value func-

tion f(x) = |x| are even because both will always produce a positive answer.

On the other hand, f(x) = x3 is odd because the negative sign perseveres for

a negative x. Regretfully, functions can also be neither even nor odd without

domain restrictions.

One special function is important enough to mention directly here. A linear

function is one that preserves the algebraic nature of the real numbers such that

f() is a linear function if:

f(x1 + x2) = f(x1) + f(x2) and f(kx1) = kf(x1)

for two points, x1 andx2, in the domain of f() and an arbitrary constant number

k. This is often more general in practice with multiple functions and multiple

constants, forms such as:

F (x1, x2, x3) = kf(x1) + `g(x2) +mh(x3)

for functions f(), g(), h() and constants k, `,m.

F Example 1.3: The “Cube Rule” in Votes to Seats. A standard, though

somewhat maligned, theory from the study of elections is due to Parker’s

(1909) empirical research in Britain, which was later popularized in that

country by Kendall and Stuart (1950, 1952). He looked at systems with two

major parties whereby the largest vote-getter in a district wins regardless of

the size of the winning margin (the so-called first past the post system

used by most English-speaking countries). Suppose that A denotes the pro-

portion of votes for one party and B the proportion of votes for the other.

Then, according to this rule, the ratio of seats in Parliament won is approxi-

mately the cube of the ratio of votes: A/B in votes implies A3/B3 in seats
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(sometimes ratios are given in the notation A :B). The political principle

from this theory is that small differences in the vote ratio yield large differ-

ences in the seats ratio and thus provide stable parliamentary government.

So how can we express this theory in standard mathematical function

notation. Define x as the ratio of votes for the party with proportionA over

the party with proportion B. Then expressing the cube law in this notation

yields

f(x) = x3

for the function determining seats, which of course is very simple. Tufte

(1973) reformulated this slightly by noting that in a two-party contest the

proportion of votes for the second party can be rewritten as B = 1 − A.

Furthermore, if we define the proportion of seats for the first party as SA,

then similarly the proportion of seats for the second party is 1− SA, and we

can reexpress the cube rule in this notation as

SA

1 − SA
=

[

A

1 −A

]3

.

Using this notation we can solve for SA (see Exercise 1.8), which produces

SA =
A3

1 − 3A+ 3A2
.

This equation has an interesting shape with a rapid change in the middle of

the range of A, clearly showing the nonlinearity in the relationship implied by

the cube function. This shape means that the winning party’s gains are more

pronounced in this area and less dramatic toward the tails. This is shown in

Figure 1.4.

Taagepera (1986) looked at this for a number of elections around the world

and found some evidence that the rule fits. For instance, U.S. House races

for the period 1950 to 1970 with Democrats over Republicans give a value

of exactly 2.93, which is not too far off the theoretical value of 3 supplied by

Parker.
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Fig. 1.4. The Cube Law
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1.5.1 Applying Functions: The Equation of a Line

Recall the familiar expression of a line in Cartesian coordinates usually given

as y = mx+ b, wherem is the slope of the line (the change in y for a one-unit

change in x) and b is the point where the line intercepts the y-axis. Clearly

this is a (linear) function in the sense described above and also clearly we can

determine any single value of y for a given value of x, thus producing a matched

pair.

A classic problem is to find the slope and equation of a line determined by two

points. This is always unique because any two points in a Cartesian coordinate

system can be connected by one and only one line. Actually we can general-

ize this in a three-dimensional system, where three points determine a unique

plane, and so on. This is why a three-legged stool never wobbles and a four-

legged chair sometimes does (think about it!). Back to our problem. . . suppose

that we want to find the equation of the line that goes through the two points
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{[2, 1], [3, 5]}. What do we know from this information? We know that for one

unit of increasing x we get four units of increasing y. Since slope is “rise over

run,” then:

m =
5 − 1

3 − 2
= 4.

Great, now we need to get the intercept. To do this we need only to plugm into

the standard line equation, set x and y to one of the known points on the line,

and solve (we should pick the easier point to work with, by the way):

y = mx+ b

1 = 4(2) + b

b = 1 − 8 = −7.

This is equivalent to starting at some selected point on the line and “walking

down” until the point where x is equal to zero.

Fig. 1.5. Parallel and Perpendicular Lines

−1 0 1 2 3 4 5 6

0
2

4
6

8
1

0

x

y

−1 0 1 2 3 4 5 6

0
2

4
6

8
1

0

x

y



28 The Basics

The Greeks and other ancients were fascinated by linear forms, and lines are

an interesting mathematical subject unto themselves. For instance, two lines

y = m1x+ b1

y = m2x+ b2,

are parallel if and only if (often abbreviated as “iff”) m1 = m2 and per-

pendicular (also called orthogonal) iff m1 = −1/m2. For example, suppose

we have the lineL1 : y = −2x+3 and are interested in finding the line parallel

to L1 that goes through the point [3, 3]. We know that the slope of this new line

must be −2, so we now plug this value in along with the only values of x and y

that we know are on the line. This allows us to solve for b and plot the parallel

line in left panel of Figure 1.5:

(3) = −2(3) + b2, so b2 = 9.

This means that the parallel line is given by L2 : y = −2x+ 9. It is not much

more difficult to get the equation of the perpendicular line. We can do the same

trick but instead plug in the negative inverse of the slope from L1:

(3) =
1

2
(3) + b3, so b3 =

3

2
.

This gives us L2 ⊥ L1, where L2 : y = 1
2x+ 3

2 .

F Example 1.4: Child Poverty and Reading Scores. Despite overall na-

tional wealth, a surprising number of U.S. school children live in poverty. A

continuing concern is the effect that this has on educational development and

attainment. This is important for normative as well as societal reasons. Con-

sider the following data collected in 1998 by the California Department of

Education (CDE) by testing all 2nd–11th grade students in various subjects

(the Stanford 9 test). These data are aggregated to the school district level

here for two variables: the percentage of students who qualify for reduced or

free lunch plans (a common measure of poverty in educational policy studies)
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and the percent of students scoring over the national median for reading at

the 9th grade. The median (average) is the point where one-half of the points

are greater and one-half of the points are less.

Because of the effect of limited English proficiency students on district

performance, this test was by far the most controversial in California amongst

the exam topics. In addition, administrators are sensitive to the aggregated

results of reading scores because it is a subject that is at the core of what

many consider to be “traditional” children’s education.

The relationship is graphed in Figure 1.6 along with a linear trend with a

slope of m = −0.75 and an intercept at b = 81. A very common tool of

social scientists is the so-called linear regression model. Essentially this is a

method of looking at data and figuring out an underlying trend in the form of

a straight line. We will not worry about any of the calculation details here, but

we can think about the implications. What does this particular line mean? It

means that for a 1% positive change (say from 50 to 51) in a district’s poverty,

they will have an expected reduction in the pass rate of three-quarters of a

percent. Since this line purports to find the underlying trend across these 303

districts, no district will exactly see these results, but we are still claiming

that this captures some common underlying socioeconomic phenomena.

1.5.2 The Factorial Function

One function that has special notation is the factorial function. The factorial of

x is denoted x! and is defined for positive integers x only:

x! = x× (x− 1) × (x− 2) × . . . 2 × 1,

where the 1 at the end is superfluous. Obviously 1! = 1, and by convention we

assume that 0! = 1. For example,

4! = 4 × 3 × 2 × 1 = 24.
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Fig. 1.6. Poverty and Reading Test Scores
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It should be clear that this function grows rapidly for increasing values of x,

and sometimes the result overwhelms commonly used hand calculators. Try,

for instance, to calculate 100! with yours. In some common applications large

factorials are given in the context of ratios and a handy cancellation can be used

to make the calculation easier. It would be difficult or annoying to calculate

190!/185! by first obtaining the two factorials and then dividing. Fortunately

we can use

190!

185!
=

190 · 189 · 188 · 187 · 186 · 185 · 184 · 183 · . . .
185 · 184 · 183 · . . .

= 190 · 189 · 188 · 187 · 186

= 234, 816, 064, 560

(recall that “·” and “×” are equivalent notations for multiplication). It would

not initially seem like this calculation produces a value of almost 250 billion,

but it does! Because factorials increase so quickly in magnitude, they can
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sometimes be difficult to calculate directly. Fortunately there is a handy way

to get around this problem called Stirling’s Approximation (curiously named

since it is credited to De Moivre’s 1720 work on probability):

n! ≈ (2πn)
1

2 e−nnn.

Here e ≈ 2.71, which is an important constant defined on page 36. Notice that,

as its name implies, this is an approximation. We will return to factorials in

Chapter 7 when we analyze various counting rules.

F Example 1.5: Coalition Cabinet Formation. Suppose we are trying to

form a coalition cabinet with three parties. There are six senior members of

the Liberal Party, five senior members of the Christian Democratic Party, and

four senior members of the Green Party vying for positions in the cabinet.

How many ways could you choose a cabinet composed of three Liberals, two

Christian Democrats, and three Greens?

It turns out that the number of possible subsets of y items from a set of n

items is given by the “choose notation” formula:

(

n

y

)

=
n!

y!(n− y)!
,

which can be thought of as the permutations ofn divided by the permutations

of y times the permutations of “not y.” This is called unordered without

replacement because it does not matter what order the members are drawn

in, and once drawn they are not thrown back into the pool for possible re-

selection. There are actually other ways to select samples from populations,

and these are given in detail in Chapter 7 (see, for instance, the discussion in

Section 7.2).

So now we have to multiply the number of ways to select three Liberals, the

two CDPs, and the three Greens to get the total number of possible cabinets

(we multiply because we want the full number of combinatoric possibilities
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across the three parties):

(

6

3

)(

5

2

)(

4

3

)

=
6!

3!(6 − 3)!

5!

2!(5 − 2)!

4!

3!(4 − 3)!

=
720

6(6)

120

2(6)

24

6(1)

= 20 × 10 × 4

= 800.

This number is relatively large because of the multiplication: For each single

choice of members from one party we have to consider every possible

choice from the others. In a practical scenario we might have many fewer

politically viable combinations due to overlapping expertise, jealousies,

rivalries, and other interesting phenomena.

1.5.3 The Modulo Function

Another function that has special notation is the modulo function, which deals

with the remainder from a division operation. First, let’s define a factor: y

is a factor of x if the result of x/y is an integer (i.e., a prime number has exactly

two factors: itself and one). So if we dividedx by y and y was not a factor of x,

then there would necessarily be a noninteger remainder between zero and one.

This remainder can be an inconvenience where it is perhaps discarded, or it can

be considered important enough to keep as part of the result. Suppose instead

that this was the only part of the result from division that we cared about. What

symbology could we use to remove the integer component and only keep the

remainder?

To divide x by y and keep only the remainder, we use the notation

x (mod y).

Thus 5 (mod 2) = 1, 17 (mod 5) = 2, and 10, 003 (mod 4) = 3, for exam-
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ple. The modulo function is also sometimes written as either

x mod y or x mod y

(only the spacing differs).

1.6 Polynomial Functions

Polynomial functions of x are functions that have components that raise x to

some power:

f(x) = x2 + x+ 1

g(x) = x5 − 33 − x

h(x) = x100,

where these are polynomials in x of power 2, 5, and 100, respectively. We have

already seen examples of polynomial functions in this chapter such as f(x) =

x2, f(x) = x(1 − x), and f(x) = x3. The convention is that a polynomial

degree (power) is designated by its largest exponent with regard to the variable.

Thus the polynomials above are of degree 2,5, and 100, respectively.

Often we care about the roots of a polynomial function: where the curve of

the function crosses the x-axis. This may occur at more than one place and may

be difficult to find. Since y = f(x) is zero at the x-axis, root finding means

discovering where the right-hand side of the polynomial function equals zero.

Consider the function h(x) = x100 from above. We do not have to work too

hard to find that the only root of this function is at the point x = 0.

In many scientific fields it is common to see quadratic polynomials, which

are just polynomials of degree 2. Sometimes these polynomials have easy-to-

determine integer roots (solutions), as in

x2 − 1 = (x− 1)(x+ 1) =⇒ x = ±1,

and sometimes they do not, requiring the well-known quadratic equation

x =
−b±

√
b2 − 4ac

2a
,
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where a is the multiplier on the x2 term, b is the multiplier on the x term, and

c is the constant. For example, solving for roots in the equation

x2 − 4x = 5

is accomplished by

x =
−(−4)±

√

(−4)2 − 4(1)(−5)

2(1)
= −1 or 5,

where a = 1, b = −4, and c = −5 from f(x) = x2 − 4x− 5 ≡ 0.

1.7 Logarithms and Exponents

Exponents and logarithms (“logs” for short) confuse many people. However,

they are such an important convenience that they have become critical to quan-

titative social science work. Furthermore, so many statistical tools use these

“natural” expressions that understanding these forms is essential to some work.

Basically exponents make convenient the idea of multiplying a number by it-

self (possibly) many times, and a logarithm is just the opposite operation. We

already saw one use of exponents in the discussion of the cube rule relating

votes to seats. In that example, we defined a function, f(x) = x3, that used 3

as an exponent. This is only mildly more convenient than f(x) = x × x × x,

but imagine if the exponent was quite large or if it was not a integer. Thus we

need some core principles for handling more complex exponent forms.

First let’s review the basic rules for exponents. The important ones are as

follows.
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Key Properties of Powers and Exponents

� Zero Property x0 = 1

� One Property x1 = x

� Power Notation power(x, a) = xa

� Fraction Property
(

x
y

)a

=
(

xa

ya

)

= xay−a

� Nested Exponents (xa)b = xab

� Distributive Property (xy)a = xaya

� Product Property xa × xb = xa+b

� Ratio Property x
a

b = (xa)
1

b =
(

x
1

b

)a

=
b
√
xa

The underlying principle that we see from these rules is that multiplication

of the base (x here) leads to addition in the exponents (a and b here), but

multiplication in the exponents comes from nested exponentiation, for example,

(xa)b = xab from above. One point in this list is purely notational: Power(x, a)

comes from the computer expression of mathematical notation.

A logarithm of (positive) x, for some base b, is the value of the exponent

that gets b to x:

logb(x) = a =⇒ ba = x.

A frequently used base is b = 10, which defines the common log. So, for

example,

log10(100) = 2 =⇒ 102 = 100

log10(0.1) = −1 =⇒ 10−1 = 0.1

log10(15) = 1.176091 =⇒ 101.1760913 = 15.
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Another common base is b = 2:

log2(8) = 3 =⇒ 23 = 8

log2(1) = 0 =⇒ 20 = 1

log2(15) = 3.906891 =⇒ 23.906891 = 15.

Actually, it is straightforward to change from one logarithmic base to another.

Suppose we want to change from base b to a new base a. It turns out that we

only need to divide the first expression by the log of the new base to the old

base:

loga(x) =
logb(x)

logb(a)
.

For example, start with log2(64) and convert this to log8(64). We simply have

to divide by log2(8):

log8(64) =
log2(64)

log2(8)

2 =
6

3
.

We can now state some general properties for logarithms of all bases.

Basic Properties of Logarithms

� Zero/One logb(1) = 0

� Multiplication log(x · y) = log(x) + log(y)

� Division log(x/y) = log(x) − log(y)

� Exponentiation log(xy) = y log(x)

� Basis logb(b
x) = x, and blogb

(x) = x

A third common base is perhaps the most interesting. The natural log is the

log with the irrational base: e = 2.718281828459045235 . . .. This does not
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seem like the most logical number to form a useful base, but in fact it turns out

to be so. This is an enormously important constant in our numbering system

and appears to have been lurking in the history of mathematics for quite some

time, however, without substantial recognition. Early work on logarithms in the

seventeenth century by Napier, Oughtred, Saint-Vincent, and Huygens hinted

at the importance of e, but it was not until Mercator published a table of “natural

logarithms” in 1668 that e had an association. Finally, in 1761 e acquired its

current name when Euler christened it as such.

Mercator appears not to have realized the theoretical importance of e, but

soon thereafter Jacob Bernoulli helped in 1683. He was analyzing the (now-

famous) formula for calculating compound interest, where the compounding is

done continuously (rather than a set intervals):

f(p) =

(

1 +
1

p

)p

.

Bernoulli’s question was, what happens to this function as p goes to infinity?

The answer is not immediately obvious because the fraction inside goes to

zero, implying that the component within the parenthesis goes to one and the

exponentiation does not matter. But does the fraction go to zero faster than the

exponentiation grows ever larger? Bernoulli made the surprising discovery that

this function in the limit (i.e., as p→ ∞) must be between 2 and 3. Then what

others missed Euler made concrete by showing that the limiting value of this

function is actually e. In addition, he showed that the answer to Bernoulli’s

question could also be found by

e = 1 +
1

1!
+

1

2!
+

1

3!
+

1

4!
+ . . .

(sometimes given as e= 1
1!+

2
2!+

3
3! +

4
4! +. . .). Clearly this (Euler’s expansion)

is a series that adds declining values because the factorial in the denominator

will grow much faster than the series of integers in the numerator.

Euler is also credited with being the first (that we know of) to show that e,

like π, is an irrational number: There is no end to the series of nonrepeating
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numbers to the right of the decimal point. Irrational numbers have bothered

mankind for much of their recognized existence and have even had negative

connotations. One commonly told story holds that the Pythagoreans put one of

their members to death after he publicized the existence of irrational numbers.

The discovery of negative numbers must have also perturbed the Pythagoreans

because they believe in the beauty and primacy of natural numbers (that the

diagonal of a square with sides equal to one unit has length
√

2 and that caused

them great consternation).

It turns out that nature has an affinity for e since it appears with great regularity

among organic and physical phenomena. This makes its use as a base for the

log function quite logical and supportable. As an example from biology, the

chambered nautilus (nautilus pompilius) forms a shell that is characterized

as “equiangular” because the angle from the source radiating outward is constant

as the animal grows larger. Aristotle (and other ancients) noticed this as well

as the fact that the three-dimensional space created by growing new chambers

always has the same shape, growing only in magnitude. We can illustrate this

with a cross section of the shell created by a growing spiral of consecutive right

triangles (the real shell is curved on the outside) according to

x = r × ekθ cos(θ) y = r × ekθ sin(θ),

where r is the radius at a chosen point, k is a constant, θ is the angle at that point

starting at the x-axis proceeding counterclockwise, and sin, cos are functions

that operate on angles and are described in the next chapter (see page 56). Notice

the centrality of e here, almost implying that these mulluscs sit on the ocean

floor pondering the mathematical constant as they produce shell chambers.

A two-dimensional cross section is illustrated in Figure 1.7 (k = 0.2, going

around two rotations), where the characteristic shape is obvious even with the

triangular simplification.

Given the central importance of the natural exponent, it is not surprising that
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Fig. 1.7. Nautilus Chambers
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the associated logarithm has its own notation:

loge(x) = ln(x) = a =⇒ ea = x,

and by the definition of e

ln(ex) = x.

This inner function (ex) has another common notational form, exp(x), which

comes from expressing mathematical notation on a computer. There is another

notational convention that causes some confusion. Quite frequently in the

statistical literature authors will use the generic form log() to denote the natural

logarithm based on e. Conversely, it is sometimes defaulted to b = 10 elsewhere

(often engineering and therefore less relevant to the social sciences). Part of

the reason for this shorthand for the natural log is the pervasiveness of e in the



40 The Basics

mathematical forms that statisticians care about, such as the form that defines

the normal probability distribution.
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1.8 New Terminology

absolute value, 4

abundant number, 45

Cartesian coordinate system, 7

common log, 35

complex numbers, 14

continuous, 21

convex set, 9

data, 6

deficient number, 45

domain, 23

equation, 18

factor, 32

index, 4

interval notation, 9

invertible, 21

irrational number, 37

linear function, 24

linear regression model, 29

logarithm, 35

mathematical function, 19

modulo function, 32

natural log, 36

ordered pair, 23

order of operations, 2

perfect number, 45

point, 7

point-slope form, 42

polynomial function, 33

principle root, 4

product operator, 12

quadratic, 33

radican, 4

range, 23

real line, 9

relation, 21

roots, 33

Stirling’s Approximation, 31

summation operator, 11

utility, 5

variable, 6
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Exercises

1.1 Simplify the following expressions as much as possible:

(−x4y2)2 9(30) (2a2)(4a4)

x4

x3
(−2)7−4

(

1

27b3

)1/3

y7y6y5y4 2a/7b

11b/5a
(z2)4

1.2 Simplify the following expression:

(a+ b)2 + (a− b)2 + 2(a+ b)(a− b) − 3a2

1.3 Solve:

3
√

23 3
√

27
4
√

625

1.4 The relationship between Fahrenheit and Centigrade can be expressed

as 5f − 9c = 160. Show that this is a linear function by putting it in

y = mx + b format with c = y. Graph the line indicating slope and

intercept.

1.5 Another way to describe a line in Cartesian terms is the point-slope

form: (y− y′) = m(x− x′), where y′ and x′ are given values andm

is the slope of the line. Show that this is equivalent to the form given

by solving for the intercept.

1.6 Solve the following inequalities so that the variable is the only term

on the left-hand side:

x− 3 < 2x+ 15

11 − 4

3
t > 3

5

6
y + 3(y − 1) ≤ 11

6
(1 − y) + 2y

1.7 A very famous sequence of numbers is called the Fibonacci sequence,

which starts with 0 and 1 and continues according to:

0, 1, 1, 2, 3, 5, 8, 13, 21, . . .
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Figure out the logic behind the sequence and write it as a function

using subscripted values like xj for the jth value in the sequence.

1.8 In the example on page 24, the cube law was algebraically rearranged

to solve for SA. Show these steps.

1.9 Which of the following functions are continuous? If not, where are

the discontinuities?

f(x) =
9x3 − x

(x− 1)(x+ 1)
g(y, z) =

6y4z3 + 3y2z − 56

12y5 − 3zy + 18z

f(x) = e−x2

f(y) = y3 − y2 + 1

h(x, y) =
xy

x+ y
f(x) =



























x3 + 1 x > 0

1
2 x = 0

−x2x < 0

1.10 Find the equation of the line that goes through the two points

{[−1,−2], [3/2, 5/2]}.

1.11 Use the diagram of the square to prove that (a− b)2 +4ab = (a+ b)2

(i.e., demonstrate

this equality geo-

metrically rather

than algebraically

with features of the

square shown).

a b

1.12 Suppose we are trying to put together a Congressional committee that

has representation from four national regions. Potential members are

drawn from a pool with 7 from the northeast, 6 from the south, 4 from

the Midwest, and 6 from the far west. How many ways can you choose

a committee that has 3 members from each region for a total of 12?
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1.13 Sørensen’s (1977) model of social mobility looks at the process of

increasing attainment in the labor market as a function of time, personal

qualities, and opportunities. Typical professional career paths follow

a logarithmic-like curve with rapid initial advancement and tapering

off progress later. Label yt the attainment level at time period t and

yt−1 the attainment in the previous period, both of which are defined

over R
+. Sørensen stipulates:

yt =
r

s
[exp(st) − 1] + yt−1 exp(st),

where r ∈ R
+ is the individual’s resources and abilities and s ∈ R

+

is the structural impact (i.e., a measure of opportunities that become

available). What is the domain of s, that is, what restrictions are

necessary on what values it can take on in order for this model to

make sense in that declining marginal manner?

1.14 The following data are U.S. Census Bureau estimates of population

over a 5-year period.

Date Total U.S. Population

July 1, 2004 293,655,404

July 1, 2003 290,788,976

July 1, 2002 287,941,220

July 1, 2001 285,102,075

July 1, 2000 282,192,162

Characterize the growth in terms of a parametric expression. Graphing

may help.

1.15 Using the change of base formula for logarithms, change log6(36) to

log3(36).

1.16 Glottochronology is the anthropological study of language change and

evolution. One standard theory (Swadish 1950,1952) holds that words

endure in a language according to a “decay rate” that can be expressed

as y = c2t, where y is the proportion of words that are retained in a
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language, t is the time in 1000 years, and c = 0.805 is a constant.

Reexpress the relation using “e” (i.e., 2.71. . . ), as is done in some

settings, according to y = e−t/τ , where τ is a constant you must

specify. Van der Merwe (1966) claims that the Romance-Germanic-

Slavic language split fits a curve with τ = 3.521. Graph this curve

and the curve from τ derived above with an x-axis along 0 to 7. What

does this show?

1.17 Sociologists Holland and Leinhardt (1970) developed measures for

models of structure in interpersonal relations using ranked clusters.

This approach requires extensive use of factorials to express personal

choices. The authors defined the notation x(k) = x(x − 1)(x −
2) · · · (x− k + 1). Show that x(k) is just x!/(x− k)!.

1.18 For the equation y3 = x2 + 2 there is only one solution where x

and y are both positive integers. Find this solution. For the equation

y3 = x2 + 4 there are only two solutions where x and y are both

positive integers. Find them both.

1.19 Show that in general

m
∑

i=1

n
∏

j=1

xiyj 6=
n

∏

j=1

m
∑

i=1

xiyj

and construct a special case where it is actually equal.

1.20 A perfect number is one that is the sum of its proper divisors. The

first five are

6 = 1 + 2 + 3

28 = 1 + 2 + 4 + 7 + 14

496 = 1 + 2 + 4 + 8 + 16 + 31 + 62 + 124 + 248.

Show that 8128 are 33550336 perfect numbers. The Pythagoreans also

defined abundant numbers: The number is less than the sum of its

divisors, and deficient numbers: The number is greater than the sum

of its divisors. Any divisor of a deficient number or perfect number
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turns out to be a deficient number itself. Show that this is true with

496. There is a function that relates perfect numbers to primes that

comes from Euclid’s Elements (around 300 BC). If f(x) = 2x −1 is

a prime number, then g(x) = 2x−1(2x − 1) is a perfect number. Find

an x for the first three perfect numbers above.

1.21 Suppose we had a linear regression line relating the size of state-level

unemployment percent on thex-axis and homicides per 100,000 of the

state population on the y-axis, with slopem = 2.41 and intercept b =

27. What would be the expected effect of increasing unemployment

by 5%?

1.22 Calculate the following:

113 (mod 3)

256 (mod 17)

45 (mod 5)

88 (mod 90).

1.23 Use Euler’s expansion to calculate e with 10 terms. Compare this

result to some definition of e that you find in a mathematics text. How

accurate were you?

1.24 Use Stirling’s Approximation to obtain 12312!. Show the steps.

1.25 Find the roots (solutions) to the following quadratic equations:

4x2 − 1 = 17

9x2 − 3x+ 12 = 0

x2 − 2x− 16 = 0

6x2 − 6x− 6 = 0

5 + 11x = −3x2.

1.26 The manner by which seats are allocated in the House of Representa-

tives to the 50 states is somewhat more complicated than most people
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appreciate. The current system (since 1941) is based on the “method

of equal proportions” and works as follows:

• Allocate one representative to each state regardless of population.

• Divide each state’s population by a series of values given by the

formula
√

i(i− 1) starting at i = 2, which looks like this for state

j with population pj :

pj√
2 × 1

,
pj√
3 × 2

,
pj√
4 × 3

, . . .
pj

√

n× (n− 1)
,

where n is a large number.

• These values are sorted in descending order for all states and House

seats are allocated in this order until 435 are assigned.

(a) The following are estimated state “populations” for the origi-

nal 13 states in 1780 (Bureau of the Census estimates; the first

official U.S. census was performed later in 1790):

Virginia 538,004

Massachusetts 268,627

Pennsylvania 327,305

North Carolina 270,133

New York 210,541

Maryland 245,474

Connecticut 206,701

South Carolina 180,000

New Jersey 139,627

New Hampshire 87,802

Georgia 56,071

Rhode Island 52,946

Delaware 45,385

Calculate under this plan the apportionment for the first House

of Representatives that met in 1789, which had 65 members.
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(b) The first apportionment plan was authored by Alexander Hamil-

ton and uses only the proportional value and rounds down to get

full persons (it ignores the remainders from fractions), and any

remaining seats are allocated by the size of the remainders to

give (10, 8, 8, 5, 6, 6, 5, 5, 4, 3, 3, 1, 1) in the order above. Rela-

tively speaking, does the Hamilton plan favor or hurt large states?

Make a graph of the differences.

(c) Show by way of a graph the increasing proportion of House

representation that a single state obtains as it grows from the

smallest to the largest in relative population.

1.27 The Nachmias–Rosenbloom Measure of Variation (MV) indicates how

many heterogeneous intergroup relationships are evident from the full

set of those mathematically possible given the population. Specifically

it is described in terms of the “frequency” (their original language) of

observed subgroups in the full group of interest. Call fi the frequency

or proportion of the ith subgroup and n the number of these groups.

The index is created by

MV =
“each frequency× all others, summed”

“number of combinations” × “mean frequency squared”

=

∑n
i=1(fi 6= fj)
n(n−1)

2 f̄2
.

Nachmias and Rosenbloom (1973) use this measure to make claims

about how integrated U.S. federal agencies are with regard to race.

For a population of 24 individuals:

(a) What mixture of two groups (say blacks and whites) gives the

maximum possible MV? Calculate this value.

(b) What mixture of two groups (say blacks and whites) gives the

minimum possible MV but still has both groups represented?

Calculate this value as well.
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1.9 Chapter Appendix: It’s All Greek to Me

The following table lists the Greek characters encountered in standard mathe-

matical language along with a very short description of the standard way that

each is considered in the social sciences (omicron is not used).

Name Lowercase Capitalized Typical Usage

alpha α – general unknown value

beta β – general unknown value

gamma γ Γ small case a general

unknown value,

capitalized version

denotes a special

counting function

delta δ ∆ often used to denote a

difference

epsilon ε – usually denotes a very

small number or error

zeta ζ – general unknown value

eta η – general unknown value

theta θ Θ general unknown value,

often used for radians

iota ι – rarely used

kappa κ – general unknown value

lambda λ Λ general unknown value,

used for eigenvalues

mu µ – general unknown value,

denotes a mean in

statistics
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Name Lowercase Capitalized Typical Usage

nu ν – general unknown value

xi ξ Ξ general unknown value

pi π Π small case can be:

3.14159. . . , general

unknown value, a

probability function;

capitalized version

should not be confused

with product notation

rho ρ – general unknown value,

simple correlation,

or autocorrelation in

time-series statistics

sigma σ Σ small case can be unknown

value or a variance (when

squared), capitalized

version should not be

confused with summation

notation

tau τ – general unknown value

upsilon υ Υ general unknown value

phi φ Φ general unknown value,

sometimes denotes the

two expressions of the

normal distribution

chi χ – general unknown value,

sometimes denotes the

chi-square distribution

(when squared)

psi ψ Ψ general unknown value

omega ω Ω general unknown value


